What Could Tailings Facility **Engineering Look Like in 2030?** Version 6.0

Andy Small

Senior Tailings Engineer, Klohn Crippen Berger, Canada asmall@klohn.com

LA SERENA • CHILE / NOVEMBER 12 - 16, 2024

Annika Bjelkevik, TCS, Sweden Andrew Witte, KCB, Canada

QR Code for Input from Audience

ISSMGE TC221

TC221 Tailing and Mine Wastes

Home / Committees / Technical Committees / TC221 Tailing and Mine Wastes

Tailing and Mine Wastes

• Thanks to:

- Ramon Verdugo, CMGI, Chair of TC221
- Luis Valenzuela, Geotechnical Consultants, Chair of the Scientific Committee

Slide 2 of 38

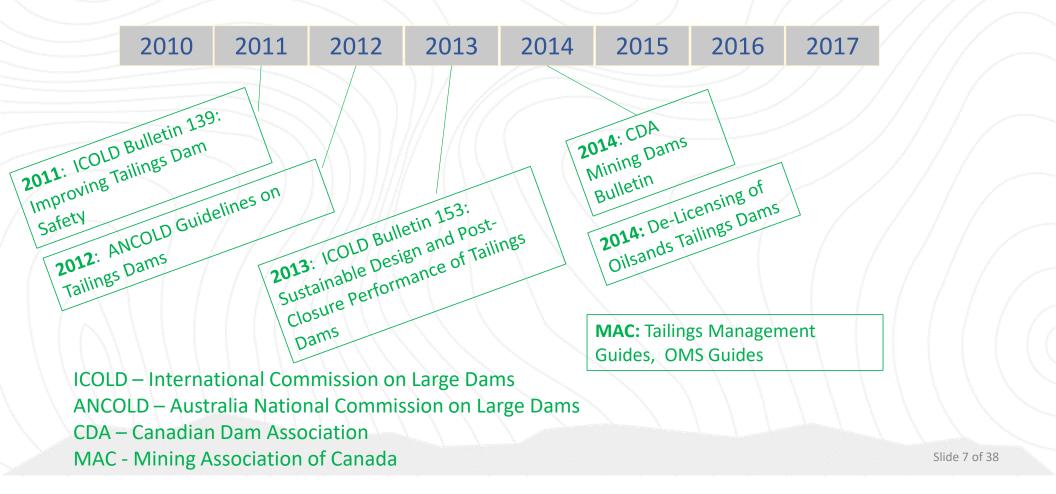
Tailings Facility Engineering

- Tailings milling and processing
- Design of tailings storage facilities
- Closure design
- Geotechnical engineering
- Hydrogeological engineering
- Hydrotechnical engineering
- Geology

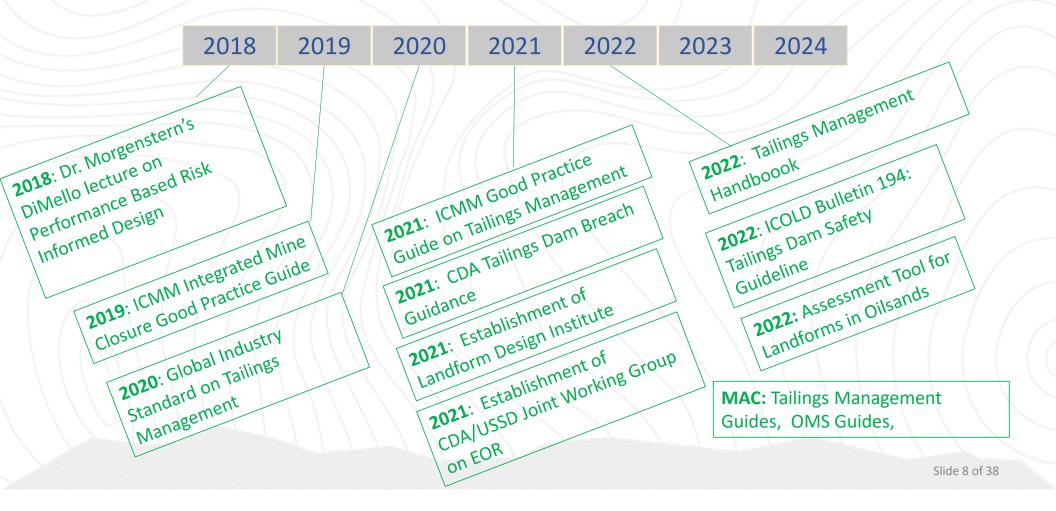
- Geochemistry
- Environmental protection
- Construction
- Operations
- Surveillance
- Risk Assessment
- Governance
- Engineering and scientific studies
- Field work (drilling, construction)
- Lab analyses (testing and interpretation)
- Modelling (simple to advanced)

Future Mining

- ICOLD: world-wide registry with over 24,000 TSFs (Rana et al, 2024)
- Mining expected to increase by about 3%/year
- Grades of ore bodies are reducing
- Leads to more tailings
- Repurposing old facilities



Slide 5 of 38


Why 2030?

- Why not 2040 or 2050?
- "Next 6 years will go by in the blink of an eye"
- Reflect on some of what has happened in the past 6 years
- Start with guidance documents

Guides Supporting Tailings Facility Engineering

Guides (cont'd)

Why 2030?

• Reflect on other activities in the past 6 years:

Торіс	2018	2024
Engineer of Record	Significant trepidation	Young engineers are viewing this as a viable career path
Surveillance	Some automation	Extensive automation and innovative technologies
Artificial Intelligence	Not prevalent	Playing a bigger role

- Opportunity to maintain the momentum that has been built
- Opportunity for more than "continuous improvement"
- We believe the next 6 years could see continued significant advancements

Context

• Positive:

- Many risk reduction initiatives underway
- Moving in a good direction
- Reducing likelihood of catastrophic failures
- Owners and Consultants have created safe environments for young engineers
- Training programs
- Gain in computing power
- Artificial Intelligence
- TSF Registry (>24,000 TSFs catalogued)

- Challenges:
 - Water scarcity
 - Investors and insurance companies are paying a great deal of attention
 - Significant demand for EORs, RTFEs, ITRBs
 - Lack of engineers
 - Loss of senior engineers
 - Need to attract and retain talent
 - Dealing with classic upstream facilities

How do we get ahead of some of these challenges?

Slide 10 of 38

Visioning to 2030

Prediction is very difficult, especially about the future.

Niels Bohr

Slide 11 of 38

What Could Tailings Facility Engineering Look Like in 2030?

- 1. Technical:
 - a) Tailings technology and deposition strategies
 - b) Closure strategies
 - c) Characterization of tailings and foundation soils
 - d) Design
 - e) Surveillance
- 2. Competency and Capacity:
 - a) Guidance documents
 - b) Training and development of Tailings Facility Engineers
 - c) Regulatory competency and capacity
- Governance is a key item that is also evolving, but beyond our scope

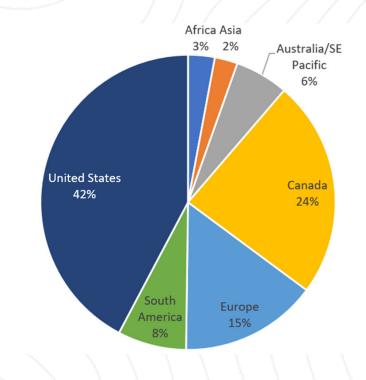
Slide 12 of 38

Intended Audience

- Owners and Operators
- Consultants
- Academia
- Suppliers
- Regulators
- Engineers who may be interested in tailings facility engineering, but would like to know where we are headed
- Geotechnical, geological, hydrogeological, and civil engineers

Young engineers

Slide 13 of 38

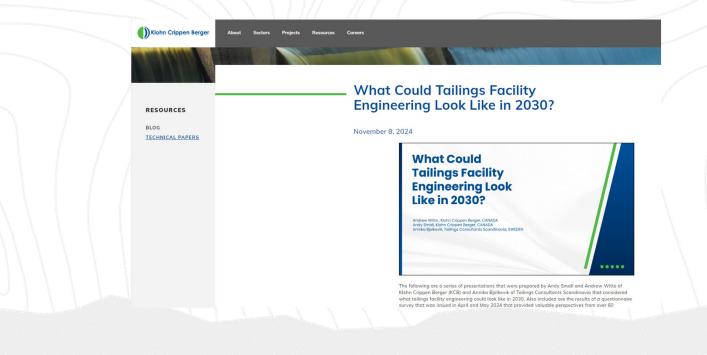

Papers and Presentations

Version	Forum	Location	Deliverable	Date (2024)	Presenter
1.0	Calgary Geotechnical Society	Calgary	Presentation	May 14	Andy
2.0	Edmonton Geotechnical Society	Edmonton	Presentation	May 16	Andy
3.0	Mining Society of Nova Scotia	Nova Scotia	Presentation	July	Andy
4.0	ICOLD	India	Presentation and paper	September	Annika
5.0	Tailings and Mine Waste	Denver	Presentation and paper	November	Andrew
6.0	International Society of Soil Mechanics and Geotechnical Engineering	Chile	Presentation and paper	November	Andy

Slide 14 of 38

Questionnaire to Colleagues/Leaders

- To support development of the presentations and papers
- Issued to over 240 colleagues around the world
- Over 60 responses
- Lots is happening, this presentation provides some of the highlights
- South America:
 - Eduaro Marques, Brazil
 - João Pimenta Freire Neto, Brazil
 - Mauro Pio dos Santos Junior, Brazil
 - Emmanuel Pornillos, Peru
 - Fernando Schnaid, Brazil
 - Luis Valenzuela, Chile



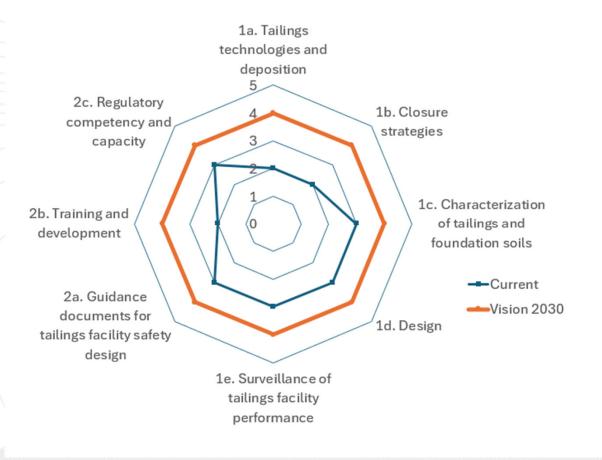
Contributors to Questionnaire

First Name	Last Name	Affiliation	Country	First Name	Last Name	Affiliation	Country
Elias	Baptista	AIB Consulting Services	Moazambique	Kim	Morrison		United States
Chris	Bareither	Colorado State	United States	Len	Murray	КСВ	Canada
Hector	Barriga	ICOLD	Peru	Lindsay	Newland Bowker	WMTF	United States
Nicholas	Beier	U of A	Canada	João	Pimenta Freire Neto	Pimenta de Ávila Consulting	Brazil
David	Brett	GHD	Australia	Mauro	Pio dos Santos Junior	Pimenta De Avila	Brazil
Karen	Chovan	Envirointegration	Canada	Gord	Pollock	WSP	Canada
Dermot	Claffey	ICOLD	United Kingdom	Emmanuel	Pornillos	WSP	Peru
Jarrad	Coffey	ICOLD	Australia	Bob	Powell	GeoRDP	Canada
Andrew	Copeland	ICOLD	South Africa	Caius	Priscu	ICOLD	Romania
Mike	Davies	Consultant	Canada	Henny Dwi	Purnamasari	ICOLD	Australia/SE Pacific
Norm	Eenkoren	Suncor	Canada	Joe	Quinn	КСВ	Canada
Fiona	Esford	WSP	Canada	Nahyan	Rana	Klohn Crippen Berger	Canada
Derek	Etherington	CNRL	Canada	David	Reid	UWA	Australia/SE Pacific
Mason	Ghafghazi	University of Toronto	Canada	Paul	Ridlen	Knight Piesold	United States
Duncan	Grant-Stuart	ICOLD	South Africa	Chaitan	Sandhu	Tetra Tech	Canada
Hans	Haggstrom	ICOLD	Sweden	Marty	Sangster	O'Kane	Canada
Eric	Halpin	Consultant	United States	Fernando	Schnaid	Universidade Federal do Rio Grande do Sul	
Christopher	Hatton	WSP	United States	Rob	Schryburt	Government of ON	Canada
Jiri	Herza	HATS Consulting	Australia	Ardy	Sharifabadi	ADEQ	United States
Dan	Hughes-Games		Canada	Clint	Strachan	Stantec	United States
Modeste	Kamanda	CCGB	DRC			ICOLD	
Dean	Korri	Cleveland-Cliffs Inc.	United States	Sara Greta	Toyra Tresoldi	LSI Lastem	Sweden
Gareth Digges	La Touche	WSP	United Kingdom		Vakulenko	ICOLD	Italy Russia
Chad	LePoudre	BHP	Canada	Aleksey			
Isabelle	Levesque	Government of QC	Canada	Luis	Valenzuala	Consultant	South America
Peter	Lighthall	Consultant	Canada	Ramon	Verdugo	Madrid	Spain
Kevin	Lutes	Newfields	United States	Hervé Kundulo		WSP Africa	DRC
Renato	Macciotti	U of A	Canada	Mark Geoffrey	Walden	Newfields	United States
Eduardo	Marques	Universidade Federal de Viçosa	Brazil	Bryan David	Watts Williams	Consultant Queensland	Canada Australia
Scott	Martens	Teck Resources	United States				
Gord	McKenna	Landform Design Inst.	Canada	Christina	Winckler	TailRiskReview LLC	United States
Nordie	Morgenstern	University of Alberta	Canada	Krzysztof	Wrzosek	ICOLD	Poland

Available to Public

• Presentations and questionnaire results available on publicly accessible drive: https://klohn.com/technical-papers/what-could-tailings-facility-engineering-look-like-in-2030/

Slide 17 of 38


Feedback Welcome

• Prepare an addendum to the paper.

Slide 18 of 38

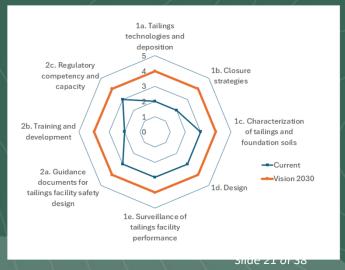
Estimated situation for each topic

0 = not implemented / used / known

1 = implemented in research /
regarded as future (pilot test) / known
by few

2 = implemented in a few operations / used in a few places / known by few but regarded as an option

3 = implemented in most operations / used in most places / known by many


4 = implemented in many operations / used in many places / known by most
5 = implemented in "all" operations / best possible use / fully known

Slide 19 of 38

What Could Tailings Facility Engineering Look Like in 2030?

- 1. Technical:
 - a) Tailings technology and deposition strategies
 - b) Closure strategies
 - c) Characterization of tailings and foundation soils
 - d) Design
 - e) Surveillance
- 2. Competency and Capacity:
 - a) Guidance documents
 - b) Training and development of Tailings Facility Engineers
 - c) Regulatory competency and capacity

Part 2b – Training and Development

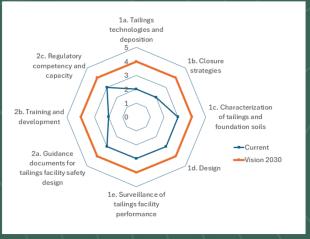
2b – Tailings Management Professional

- Establish the discipline of Tailings Management Professional
- Tailings management includes the design, construction operation, and closure of systems that are used to produce tailings and the facilities that are constructed to store tailings
- Tailings structures include:
 - Conventional slurry, thickened, paste, filtered tailings stacks, etc.
 - Co-disposal with waste rock
 - Sludge and sediment containment facilities from process, water treatment plants, or runoff.

2b – Tailings Management Prof. (cont'd)

- Tailings milling and processing
- Design of tailings storage facilities
- Closure design
- Geotechnical engineering
- Hydrogeological engineering
- Hydrotechnical engineering
- Geology

- Geochemistry
- Environmental protection
- Construction
- Operations
- Surveillance
- Risk Assessment
- Governance


2b – Training and Dev. - Path Forward

and the second			Ser Server Sher Sher Sher		
Vision for 2030	Action	Organizations	Role		
Tailings Management Professional	Develop scope for this discipline and embrace usage	ICOLD	Lead development, work with ICMM, SME, CDA, ANCOLD, universities, etc.		
Decision w.r.t. certification of Tailings Management Professional	Study this issue and land on a decision	ICOLD	Form working group to explore this issue. Work with ICMM, SME, CDA, ANCOLD, universities, etc.		
Coordinated training	Develop Tailings Training Portal that reflects available training in the world. Use the Portal to support developing a coordinated training program.	SME	Host for the portal, supported by several organizations		
Tailings cohorts in post graduate programs	Develop Masters-level program focused on training engineers to enter the tailings profession	Colorado State University	Lead development of this initiative, supported by other universities		

What Could Tailings Facility Engineering Look Like in 2030?

- 1. Technical:
 - a) Tailings technology and deposition strategies
 - b) Closure strategies
 - c) Characterization of tailings and foundation soils
 - d) Design
 - e) Surveillance
- 2. Competency and Capacity:
 - a) Guidance documents
 - b) Training and development of Tailings Facility Engineers
 - c) Regulatory competency and capacity

Part 1 – Technical Topics

Slide 26 of 38

1a - Tailings Technology – 2030?

- Conventional/slurried tailings:
 - Still will be the majority of tailings systems with focus on centerline and downstream dams
 - There will not be new TSFs built using the classical approach for upstream dams (liquefiable elements in the structural shell)
 - High degree of confidence in slurry tailings facilities

• Filtered tailings will play a larger role

1a - Tailings Technology - Path Forward

	Vision for 2030	Action	Organizations	Role
	Guidance on Filtered Tailings	Comprehensive, publicly available guidance document that addresses process and geotechnical aspects, but also, possibly enhanced financial models	Filtered tailings industry and SME	To lead the development of the guidance. Supported by ICOLD and other organizations.
v t F	MAA that considers the whole mine, not just the ailings. Includes the mining plan, water restrictions, losure, etc.	Work with mining companies and MAC/ICMM to promote this concept. Also, develop financial models that can support better closure decisions.	Lead to be determined	To be determined
	Co-disposal of tailings and vaste rock more prominent	To develop		
S	ligh level of confidence in afety of conventional/ lurried tailings systems	Continue training and development	All	Continue solid engineering

Slide 28 of 38

1b – Closure Strategies – 2030?

- Consensus between all parties of an appropriate definition of Safe closure/ Responsible closure
- Defined and standardized design criteria for closure, incl. transfer of ownership
- Less water in the tailings and impoundments
- Financial models that benefit good practices
- Long-term monitoring with remote methods and AI
- Established the role of reclamation designer of record (RDR) working in parallel with EOR.

1b – Closure Strategies – Path Forward

Vision for 2030	Action	Organizations	Role
Tailings Closure Handbook	 "Begin with the end in mind. Closure should not be an afterthought. - closure design considerations/ criteria - safe/responsible closure - landform design - governance - relinquishment - cost estimating / bonding" 	SME	SME to lead development of handbook. The book editors are engaging with other organizations (e.g., USSD, CDA).
Risk Informed Closure Design	Develop guidance on "responsible" closure.	CDA	CDA to lead with input from ICOLD, USSD, SME, ICMM, etc.
No water covers required for geochemistry reasons	Desulphurization of tailings in the mill. Dry covers. Enhanced financial models.	MAC or ICMM?	ICOLD will monitor

Slide 30 of 38

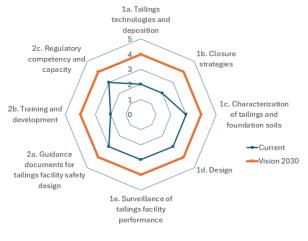
Ic – Char. Tailings and Found. Soils – 2030?

- Use of nuclear magnetic
 resonance well logging and other
 in-situ technologies on CPTs for
 water content estimation
- Improved ability to estimate in-situ void ratio and state parameter
- Improved characterization of liquefaction potential and post liquefaction strength
- Initiatives underway by academia, industry, and suppliers

Id – Design – 2030?

• Performance Based Design for Slope Stability Assessment:

- PB design integrates advanced computer modelling with actual performance to reduce uncertainty and conservatisms in design
- From Dr. Morgenstern: "Further recognition of the value of Performance Based Design and significantly greater prominence in its use."
- Integration of complementary roles of PBD and classical approaches
- Fully coupled deformation and seepage models
- Regulatory capacity will still be a limitation to implementation
- Dam breach analysis that can be relied upon.



Slide 32 of 38

Id - Design – Path Forward

Vision for 2030	Action	Organizations	Role	
Greater use of	Education, case studies	ICMM, CDA, and	ICMM and CDA – training	
Performance Based		industry	Industry – case studies on	
Design			PB design	
Reduced uncertainty for dam breach	Research to improve models and characterization and enhance guidance	CANBREACH CDA	CANBREACH – research CDA - guidance	
analyses				

Part 2 – Competency and Capacity

Slide 34 of 38

2a – Guidance Documents

- Some said: "We have enough guidance documents, use what we have!"
- Guidelines in review/being updated:
 - MAC
 - CDA
 - USSD (FEMA)
 - CDA/USSD EOR
 - Landform Design Guidance
 - ICOLD Bulletin 194:
 - hydrogeology and hydrology, undrained stability analyses, brittleness stability, spillways, characterization
 - Others

Key Initiatives Supporting the 2030 Vision

- Tailings Management Professional
- Tailings Training portal
- Site characterization
- Performance based design
- Improvements to dam breach analyses
- Modified financial models
- Key guidance documents
- Fraction of the initiatives that are happening in the world
- Many other good initiatives are underway, pleased to include in our addendum
- Let's maintain the momentum and go beyond just "continuous improvement"!

Slide 36 of 38

Being a Tailings Management Professional is and will be very interesting!

Annika Bjelkevik, TCS Sweden

Andrew Witte, KCB Vancouver

Andy Small, KCB Fredericton

Slide 37 of 38

Thank you - Feedback welcome

• Prepare an addendum to the paper.

Andy Small Senior Tailings Engineer, KCB asmall@klohn.com

Slide 38 of 38