What Could Tailings Facility Engineering Look Like in 2030?

Version 5.0

Andrew Witte, Klohn Crippen Berger, CANADA Andy Small, Klohn Crippen Berger, CANADA Annika Bjelkevik, Tailings Consultants Scandinavia, SWEDEN

TAILINGS AND MINE WASTE 2024

What is Tailings Facility Engineering?

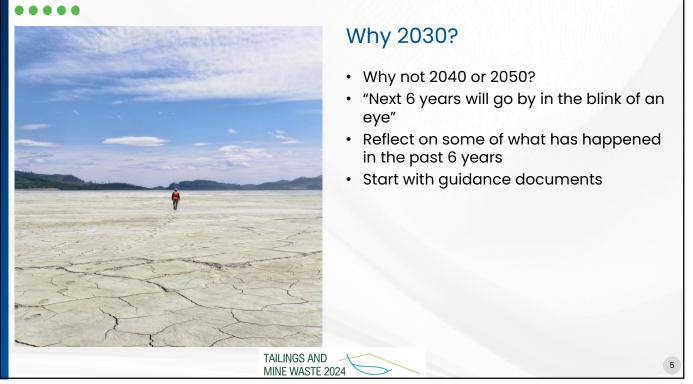
Topics/Disciplines

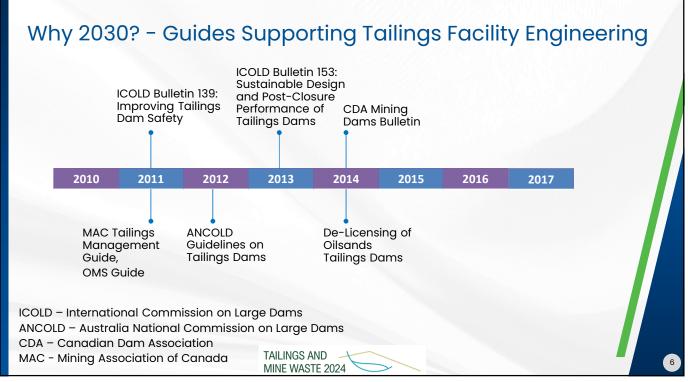
- Tailings milling and processing
- Design of tailings storage facilities
- Closure design
- Geotechnical engineering
- Hydrogeological engineering
- Hydrotechnical engineering
- Geology
- Geochemistry
- Environmental protection
- Construction
- Operations
- Surveillance
- Risk Assessment
- Governance

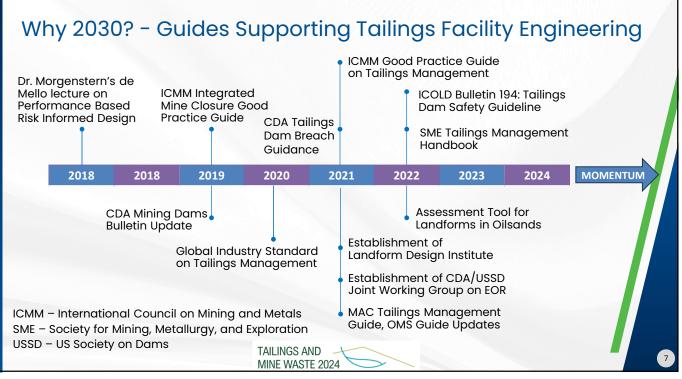
Technical Inputs

MINE WASTE 2024

- Engineering and scientific studies
- Field work (drilling, construction)
- · Lab analyses (testing and interpretation)
- Modelling (simple to advanced)




Some Mining Trends


- Grades of ore bodies are reducing
- Leads to more tailings (annual growth of mining/tailings about 3%)
- Leads to bigger tailings facilities and repurposing old facilities
- World-wide registry with over 24,000 TSFs (Rana et al, 2024) (ICOLD, TC L)
- There are insufficient human resources to meet the demand

Is the tailings engineering community matching the pace?

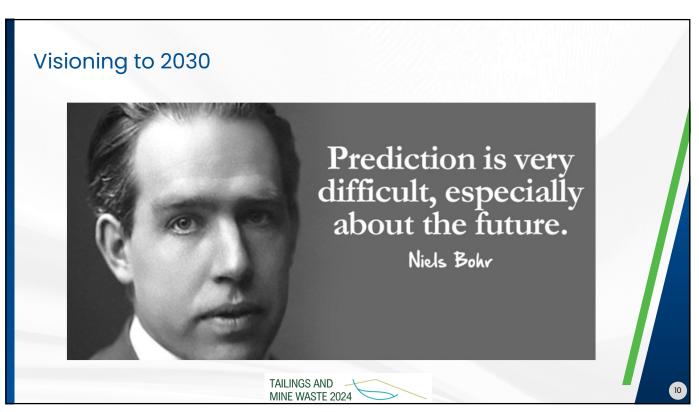
Why 2030? - Reflection on some examples in the past 6 years

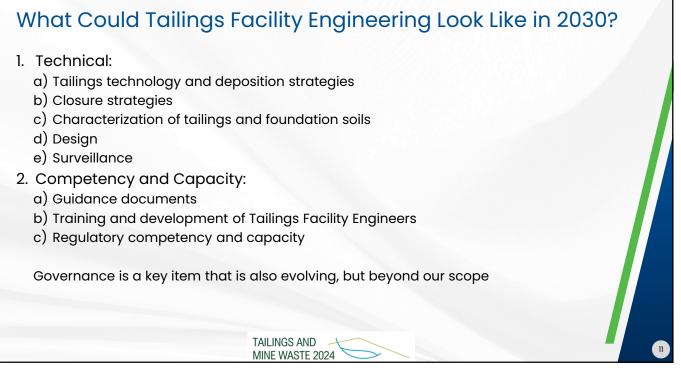
Торіс	2018	2024
Engineer of Record	Significant trepidation	Young engineers are viewing this as a viable career path
Surveillance	Some automation	Extensive automation and innovative technologies
Artificial Intelligence	Not prevalent	Playing a bigger role
pportunity for more	ain the momentum that has been than "continuous improvement" ant advances in the next 6 years	built

TAILINGS AND MINE WASTE 2024

Context

Positives


- Many risk reduction initiatives underway
- Moving in a good direction
- Reducing likelihood of catastrophic failures
- Owners and Consultants have created safe environments for young engineers
- Training programs
- · Gain in computing power
- Artificial Intelligence
- TSF Registry (>24,000 TSFs catalogued)

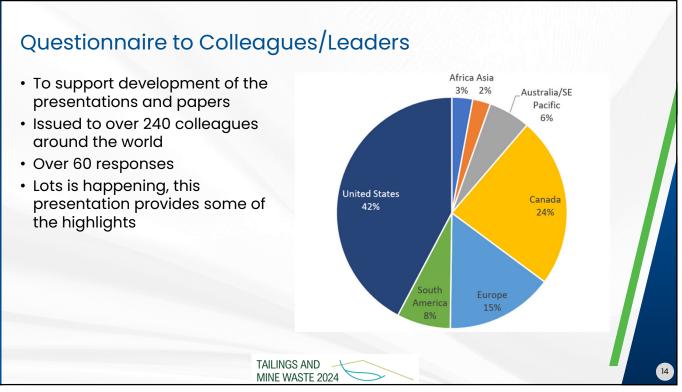

Challenges

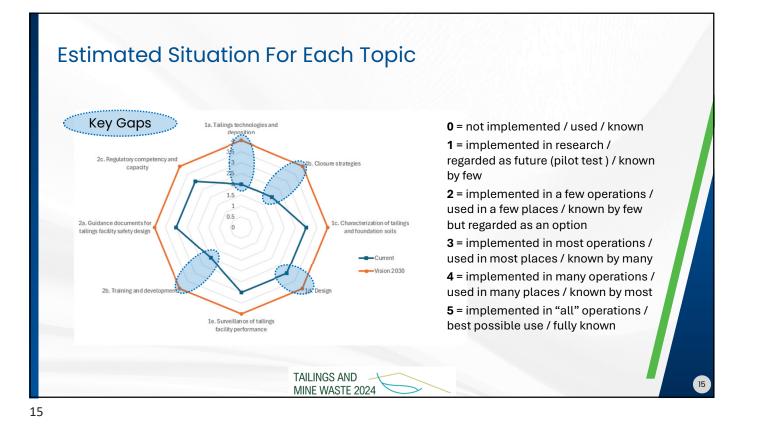
- Water scarcity
- Investors and insurance companies are paying a great deal of attention
- Significant demand for EORs, RTFEs, ITRBs
- Lack of engineers
- Loss of senior engineers
- Need to attract and retain talent
- Dealing with classic upstream facilities

How do we get ahead of some of these challenges?

TAILINGS AND MINE WASTE 2024

Intended Audience

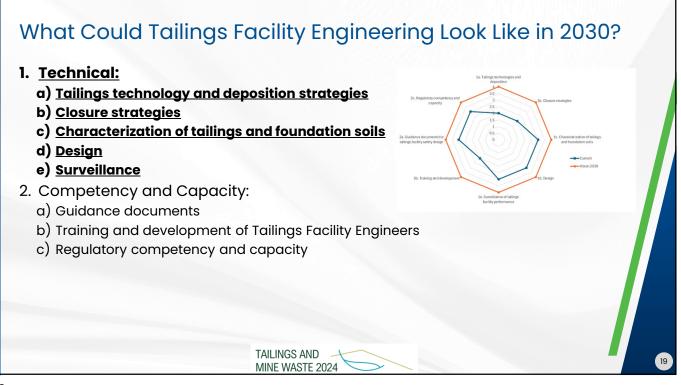

- Owners and Operators
- Consultants
- Academia
- Suppliers
- Regulators



- Geotechnical, geological, hydrotechnical, hydrogeological, and civil engineers
- Young engineers who are interested in tailings facility engineering, but would like to know where we are headed

TAILINGS AND MINE WASTE 2024

Papers o	and Presentations	\$			
Version	Forum	Location	Deliverable	Date (2024)	Presenter
1.0	Calgary Geotechnical Society	Calgary	Presentation	May 14	Andy
2.0	Edmonton Geotechnical Society	Edmonton	Presentation	May 16	Andy
3.0	Mining Society of Nova Scotia	Nova Scotia	Presentation	July	Andy
4.0	ICOLD	India	Presentation and paper	September	Annika
5.0	Tailings and Mine Waste	Denver	Presentation and paper	November	Andrew
6.0	International Society of Soil Mechanics and Geotechnical Engineering	Chile	Presentation and paper	November	Andy
			Roberts and the second		
 Make pres 	entations and papers avai	lable on pub	DIICIY accessible di	rive	
		IGS AND WASTE 2024			


What Could Tailings Facility Engineering Look Like in 2030?

- 1. Technical:
 - a) Tailings technology and deposition strategies
 - b) Closure strategies
 - c) Characterization of tailings and foundation soils
 - d) Design
 - e) Surveillance
- 2. Competency and Capacity:
 - a) Guidance documents
 - b) Training and development of Tailings Facility Engineers
 - c) Regulatory competency and capacity

2b: Training and Development - Path Forward

Vision for 2030	Action	Organizations	Role
Tailings Management Professional	Develop scope for this discipline and embrace usage	ICOLD	Lead development, work with ICMM, SME, CDA, ANCOLD, universities, etc.
Decision w.r.t. certification of Tailings Management Professional	Study this issue and land on a decision	ICOLD	Form working group to explore this issue. Work with ICMM, SME, CDA, ANCOLD, universities, etc.
Coordinated training	Develop Tailings Training Portal that reflects available training in the world. Use the Portal to support developing a coordinated training program.	SME	Host for the portal, supported by several organizations
Tailings cohorts in post graduate programs	Develop Masters-level program focused on training engineers to enter the tailings profession	Colorado State University	Lead development of this initiative, supported by other universities

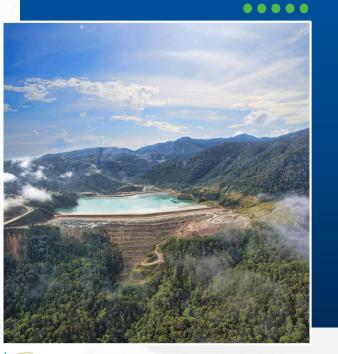
1a: Tailings Technology - Path Forward

	A stice	A	Dala
Vision for 2030	Action	Organizations	Role
Guidance on Filtered Tailings	Comprehensive, publicly available guidance document that addresses process and geotechnical aspects, but also, possibly enhanced financial models	Filtered tailings industry	To lead the development of the guidance. Supported by ICOLD and other organizations.
MAA that considers the whole mine, not just the tailings. Includes the mining plan, water restrictions, closure, circular economy.	Work with mining companies and MAC/ICMM to promote this concept. Also, develop financial models that can support better closure decisions.	Lead to be determined	To be determined
Co-disposal of tailings and waste rock more prominent	To develop		
High level of confidence in safety of conventional/ slurried tailings systems	Continue training and development	All	Continue solid engineering
	MINE WASTE 2024		

21

1b: Closure Strategies - 2030?

- Consensus between all parties of an effective definition of Safe closure/ Responsible closure
- Defined and standardized design criteria for closure, incl. transfer of ownership
- Less water in the tailings and impoundments
- Financial models that benefit good practices
- Long-term monitoring with remote methods and AI
- Established the role of reclamation designer of record (RDR) working in parallel with EOR.
 TAILINGS AND



Vision for 2030 ailings Closure	Action "Begin with the end in mind". Closure	Organizations SME	Role SME to lead development of handbook. The book
landbook	should not be an afterthought. - closure design considerations/ criteria, - safe closure - landform design - governance - relinquishment - cost estimating / bonding"		editors are engaging with other organizations (e.g., USSD, CDA).
Risk Informed Closure Design	Develop guidance on "safe" or "responsible" closure.	CDA	CDA to lead with input from ICOLD, USSD, SME, ICMM, etc.
	TAILINGS AND		

1d: Design - 2030?

- Performance Based Design for Slope Stability Assessment:
 - PB design integrates advanced computer modelling with actual performance to reduce uncertainty and conservatisms in design
 - From Dr. Morgenstern: "Further recognition of the value of Performance Based Design and significantly greater prominence in its use."
 - Integration of complementary roles of PBD and classical approaches
 - Fully coupled deformation and seepage models
 - Regulatory capacity will still be a limitation to implementation
- Dam breach analysis that can be relied upon.

TAILINGS AND MINE WASTE 2024

25

1d: Design – Path Forward

Vision for 2030	Action	Organizations	Role
Greater use of Performance Based Design	Education, case studies	ICMM, CDA, and industry	ICMM and CDA – training Industry – case studies on PB design
Reduced uncertainty for dam breach analyses	Research to improve models and characterization and enhance guidance	CANBREACH CDA	CANBREACH – research CDA - guidance
No water covers required for geochemistry reasons	Desulphurization of tailings in the mill. Enhanced financial models. MAA for the mine, not just tailings.	MAC or ICMM?	ICOLD will monitor
	TAILINGS AND MINE WASTE 2024		-

Summary

- This is a fraction of the initiatives that are happening in the world
- Many other good initiatives are underway, pleased to include in our paper
- Let's maintain the momentum and go beyond just "continuous improvement"!

Contributors to Questionnaire (and still counting)

First Name	Last Name	Affiliation	Country		First Name	Last Name	Affiliation	Country
Elias	Baptista	AIB Consulting Services	Moazambique		Kim	Morrison		United States
Chris	Bareither	Colorado State	United States		Len	Murray	KCB	Canada
Hector	Barriga	ICOLD	Peru		Lindsay	Newland Bowker	WMTF	United States
Nicholas	Beier	U of A	Canada		João	Pimenta Freire Neto	Pimenta de Ávila Consulting	Brazil
David	Brett	GHD	Australia		Mauro	Pio dos Santos	Pimenta De Avila	Brazil
Karen	Chovan	Envirointegration	Canada			Junior		
Dermot	Claffey	ICOLD	United Kingdom		Gord	Pollock	WSP	Canada
larrad	Coffey	ICOLD	Australia		Emmanuel	Pornillos	WSP	Peru
ndrew	Copeland	ICOLD	South Africa		Bob	Powell	GeoRDP	Canada
Mike	Davies	Consultant	Canada		Caius	Priscu	ICOLD	Romania
Norm	Eenkoren	Suncor	Canada		Henny Dwi	Purnamasari	ICOLD	Australia/SE Pacific
Fiona	Esford	WSP	Canada		Joe	Quinn	KCB	Canada
Derek	Etherington	CNRL	Canada		Nahyan	Rana	Klohn Crippen Berger	Canada
Mason	Ghafghazi	University of Toronto	Canada		David	Reid	UWA	Australia/SE Pacific
Duncan	Grant-Stuart	ICOLD	South Africa		Paul	Ridlen	Knight Piesold	United States
Hans	Haggstrom	ICOLD	Sweden		Chaitan		Tetra Tech	Canada
Eric	Halpin	Consultant	United States		Marty	Sangster	O'Kane	Canada
Christopher	Hatton	WSP	United States		Fernando	Schnaid	Universidade Federal do Rio Grande do Sul	Brazil
iri	Herza	HATS Consulting	Australia		Rob	Schryburt	Government of ON	Canada
Dan	Hughes-Games	Klohn Crippen Berger	Canada		Ardy	Sharifabadi	ADEQ	United States
Modeste	Kamanda	CCGB	DRC		Clint	Strachan	Stantec	United States
Dean	Korri	Cleveland-Cliffs Inc.	United States				ICOLD	Sweden
Gareth Digges	La Touche	WSP	United Kingdom		Sara	Toyra Tresoldi	LSI Lastem	
Chad	LePoudre	BHP	Canada		Greta Aleksev	Vakulenko	ICOLD	Italy Russia
Isabelle	Levesque	Government of QC	Canada		Luis	Vakulenko Valenzuala	Consultant	
Peter	Lighthall	Consultant	Canada				Madrid	South America
Kevin	Lutes	Newfields	United States		Ramon	Verdugo		Spain
Renato	Macciotti	U of A	Canada		Hervé Kundulo		WSP Africa	DRC
Eduardo	Margues	Universidade Federal	Brazil		Mark Geoffrey		Newfields	United States
		de Viçosa			Bryan		Consultant	Canada
Scott	Martens	Teck Resources	United States		David	Williams	Queensland	Australia
Gord	McKenna	Landform Design Inst.	Canada	AND -	-			
Nordie	Morgenstern	University of Alberta			Christina		TailRiskReview LLC	United States
	0	,		STE 2024	Krzysztof	Wrzosek	ICOLD	Poland

