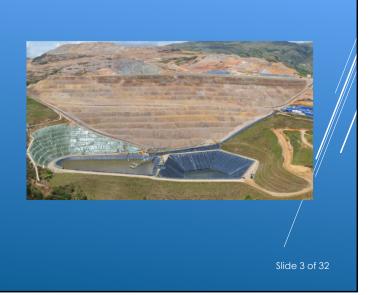
What Could Tailings Facility Engineering Look Like in 2030? Version 3.0

Andy Small, KCB, Canada Annika Bjelkevik, TCS, Sweden Andrew Witte, KCB, Canada

> For Presentation to Mining Society of Nova Scotia June 6, 2024

1

Tailings Facility Engineering


- Tailings milling and processing
- Design of tailings storage facilities
- ► Closure design
- Geotechnical engineering
- ► Hydrogeological engineering
- ► Hydrotechnical engineering
- Geology

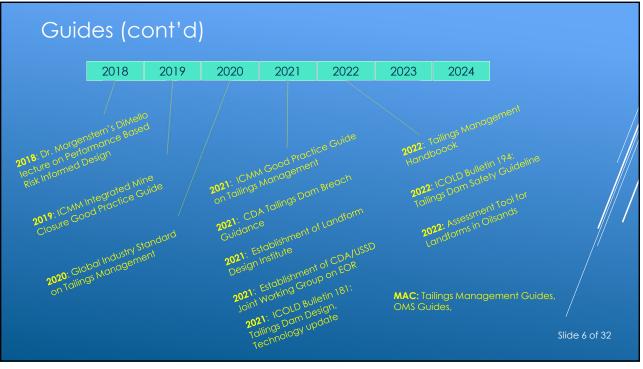
- Geochemistry
- Environmental protection
- ► Construction
- ► Operations
- ► Surveillance
- Risk Assessment
- ► Governance
- Engineering and scientific studies
- ► Field work (drilling, construction)
- Lab analyses (testing and interpretation)
 - Modelling (simple to advanced)

Slide 2 of 32

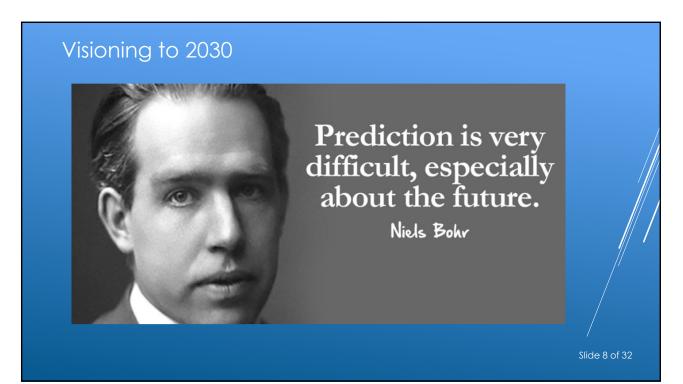
Future Tailings Production and Storage

- Mining expected to increase by about 3%/year
- Grades of ore bodies are reducing
- ► Leads to more tailings

3


Why 2030?

- ▶ Why not 2040 or 2050?
- "Next 6 years will go by in the blink of an eye"
- ▶ Reflect on some of what has happened in the past 6 years
- Start with guidance documents


Why 2030?

• Reflect on some of what has happened in the past 6 years:

Торіс	2018	2024
Engineer of Record	Significant trepidation	Young engineers are viewing this as a viable career path
Surveillance	Some automation	Extensive automation and innovative technologies, remote monitoring centres
Artificial Intelligence	Not prevalent	Playing a bigger role

- Opportunity to maintain the momentum that has been built
- Opportunity for more than "continuous improvement"
- ▶ We believe the next 6 years could continue to see significant advancements

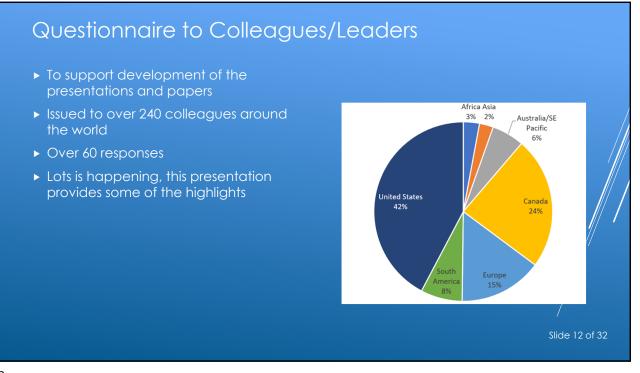
Slide 7 of 32

What Could Tailings Facility Engineering Look Like in 2030?

- 1. Technical:
 - a) Tailings technology and deposition strategies
 - b) Closure strategies
 - c) Characterization of tailings and foundation soils
 - d) Design
 - e) Surveillance
- 2. Competency and Capacity:
 - a) Guidance documents
 - b) Training and development of Tailings Facility Engineers
 - c) Regulatory competency and capacity

Governance is a key item that is also evolving, but beyond our scope

Slide 9 of 32


9

Intended Audience

- Owners and Operators
- ► Consultants
- ► Academia
- ► Suppliers
- ► Regulators
- ► Geotechnical, geological, hydrotechnical, hydrogeological, and civil engineers
- Young engineers who are interested in tailings facility engineering, but would like to know where we are headed

Slide 10 of 32

Version	Forum	Location	Deliverable	Date (2024)	Presenter
1.0	Calgary Geotechnical Society	Calgary	Presentation	May 14	Andy
2.0	Edmonton Geotechnical Society	Edmonton	Presentation	May 16	Andy
3.0	Mining Society of Nova Scotia	Nova Scotia	Presentation	July	Andy
4.0	ICOLD	India	Presentation and paper	September	Annika
5.0	Tailings and Mine Waste	Denver	Presentation and paper	November	Andrew
6.0	International Society of Soil Mechanics and Geotechnical Engineering	Chile	Presentation and paper	November	Andy
► B	uild the presentations w	vith feedbac	ck from each session		
⊾ D	reparing papers for ICC		and ISSMGE		

What Could Tailings Facility Engineering Look Like in 2030?

- 1. Technical Items:
 - a) Tailings technology and deposition strategies
 - b) Closure strategies
 - c) Characterization of tailings and foundation soils
 - d) Design
 - e) Surveillance
- 2. Competency and Capacity:
 - a) Guidance documents
 - b) **<u>Training and development</u>**
 - c) Regulatory competency and capacity

Slide 13 of 32

2b – Tailings Management Professional

- Establish the discipline of Tailings Management Professional
- Tailings management includes the design, construction operation, and closure of systems that are used to produce tailings and the facilities that are constructed to store tailings
- Tailings structures include:
 - Conventional slurry, thickened, paste, filtered tailings stacks, etc.
 - ► Co-disposal with waste rock
 - ► Sludge and sediment containment facilities from process, water treatment plants, or runoff.

Slide 15 of 32

2b - Tailings Management Professional (cont'd)

- ► Tailings milling and processing
- Design of tailings storage facilities
- ► Closure design
- Geotechnical engineering
- Hydrogeological engineering
- Hydrotechnical engineering
- Geology

- Geochemistry
- Environmental protection
- ► Construction
- Operations
- ► Surveillance
- ► Risk Assessment
- ► Governance

2b –Trainina	and Devel	opment -	Path Forward –

Vision for 2030	Action	Organizations	Role
Tailings Management Professional	Develop scope for this discipline and embrace usage	ICOLD	Lead development, work with ICMM, SME, CDA, ANCOLD, universities, etc.
Decision w.r.t. certification of Tailings Management Professional	Study this issue and land on a decision	ICOLD	Form working group to explore this issue. Work with ICMM, SME, CDA, ANCOLD, universities, etc.
Coordinated training	Develop Tailings Training Portal that reflects available training in the world. Use the Portal to support developing a coordinated training program.	SME	Host for the portal, supported by several organizations
Tailings cohorts in post graduate programs	Develop Masters-level program focused on training engineers to enter the tailings profession	Colorado State University	Lead development of this initiative, supported by other universities
			Slide 17 of 32

What Could Tailings Facility Engineering Look Like in 2030?

- 1. Technical Items:
 - a) Tailings technology and deposition strategies
 - b) Closure strategies
 - c) Characterization of tailings and foundation soils
 - d) Design
 - e) Surveillance
- 2. Competency and Capacity:
 - a) Guidance documents
 - b) Training and development
 - c) Regulatory competency and capacity

Slide 18 of 32

Part 1 - Technical Topics

19

1a - Tailings Technology – 2030?

- ► Conventional/slurried tailings:
 - Still will be the majority of tailings systems with focus on centerline and downstream dams
 - No more classical upstream dams being constructed in the world
 - High degree of confidence in slurry tailings facilities
- Filtered tailings will play a larger role

Slide 19 of 32

Vision for 2030	Action	Organizations	Role
Guidance on Filtered Tailings	Comprehensive, publicly available guidance document that addresses process and geotechnical aspects, but also, possibly enhanced financial models	Filtered tailings industry	To lead the development of the guidance. Supported by ICOLD and other organizations.
MAA that considers the whole mine, not just the tailings. Includes the mining plan, water restrictions, closure, circular economy.	Work with mining companies and MAC/ICMM to promote this concept. Also, develop financial models that can support better closure decisions.	Lead to be determined	To be determined
Co-disposal of tailings and waste rock more prominent	To develop		
High level of confidence in safety of conventional/ slurried tailings systems	Continue training and development	All	Continue solid engineering
			Slide 21 of 32

1b – Closure Strategies – 2030?

- Consensus between all parties of an effective definition of Safe closure/ Responsible closure
- > Defined and standardized design criteria for closure, incl. transfer of ownership
- Less water in the tailings and impoundments
- Financial models that benefit good practices
- Long-term monitoring with remote methods and AI
- Established the role of reclamation designer of record (RDR) working in parallel with EOR.

Slide 23 of 32

Vision for 2030	Action	Organizations	Role
Tailings Closure Handbook	"Begin with the end in mind. Closure should not be an afterthought. - closure design considerations/ criteria, - safe closure - landform design - governance - relinquishment - cost estimating / bonding"	SME	SME to lead development of handbook. The book editors are engaging with other organizations (e.g., USSD, CDA).
Risk Informed Closure Design	Develop guidance on "safe" or "responsible" closure.	CDA	CDA to lead with input from ICOLD, USSD, SME, ICMM, etc.
			Slide 24 of 32

1c – Char. of Tailings and Foundation Soils – 2030?

- Use of nuclear magnetic resonance well logging and other in-situ technologies on CPTs for water content estimation
- Ability to estimate in-situ void ratio
- Improved characterization of liquefaction potential and post liquefaction strength
- Initiatives underway by academia, industry, and suppliers

Slide 25 of 32


25

1d - Design - 2030?

- ▶ Performance Based Design for Slope Stability Assessment:
 - PB design integrates advanced computer modelling with actual performance to reduce uncertainty and conservatisms in design
 - From Dr. Morgenstern: "Further recognition of the value of Performance Based Design and significantly greater prominence in its use."
 - Integration of complementary roles of PBD and classical approaches
 - ► Fully coupled deformation and seepage models
 - Regulatory capacity will still be a limitation to implementation
- ▶ Dam breach analysis that can be relied upon.

Slide 26 of 62

Action	Organizations	Role
Education, case studies	ICMM, CDA, and industry	ICMM and CDA – training Industry – case studies on PB design
Research to improve models and characterization and enhance guidance	CANBREACH CDA	CANBREACH – research CDA - guidance
Desulphurization of tailings in the mill. Enhanced financial models. MAA for the mine, not just tailings.	MAC or ICMM?	ICOLD will monitor
	Education, case studies Research to improve models and characterization and enhance guidance Desulphurization of tailings in the mill. Enhanced financial models.	Education, case studiesICMM, CDA, and industryResearch to improve models and characterization and enhance guidanceCANBREACH CDADesulphurization of tailings in the mill. Enhanced financial models.MAC or ICMM?

2a – Guidance Documents

- ► Some said: "We have enough guidance documents, use what we have!"
- Guidelines in review/being updated:
 - ► MAC
 - ► CDA
 - ► USSD (FEMA)
 - ► CDA/USSD EOR
 - ► ICOLD Bulletin 194
 - ► Others

Slide 29 of 32

2a - Guidan	ce – Path Forward		
Vision for 2030		Organizations	Role
Preferred definition of Credible Failure Modes	Objective guidance on thresholds for physical possibility and negligibility	CDA	Lead development of guidance, supported by other organizations
Landform Design Guidance	Develop comprehensive guidance for landform design	LDI	Lead development of guidance with support from other organizations
ICOLD Bulletin 194 Version X	Additional guidance on hydrogeology and hydrology, undrained stability analyses, brittleness stability, spillways, characterization	ICOLD	Lead preparation of guidance with input from other organizations
			Slide 30 of 32

Summary

- ▶ Fraction of the initiatives that are happening in the world
- Many other good initiatives are underway, pleased to include in our paper
- Let's maintain the momentum and go beyond just "continuous improvement"!

Slide 31 of 32

31

Being a Tailings Management Professional is and will be very interesting!

Annika Bjelkevik, TCS Sweden

Andrew Witte, KCB Vancouver

Andy Small, KCB Fredericton

End of Presentation

		\sim \cdot	
Contribu	Jtors to	Questio	nnaire

Chris	Bareither	Colorado State	United States
Hector	Barriga	ICOLD	Peru
Nicholas	Beier	U of A	Canada
Karen	Chovan	Envirointegration	Canada
Dermot	Claffey	ICOLD	United Kingdom
Jarrad	Coffey	ICOLD	Australia
Andrew	Copeland	ICOLD	South Africa
Mike	Davies	Consultant	Canada
Norm	Eenkoren	Suncor	Canada
Fiona	Esford	WSP	Canada
Derek	Etherington	CNRL	Canada
Duncan	Grant-Stuart	ICOLD	South Africa
Hans	Haggstrom	ICOLD	Sweden
Eric	Halpin	Consultant	United States
Dean	Korri	Cleveland-Cliffs Inc.	United States
Gareth Digges	La Touche	WSP	United Kingdom
Chad	LePoudre	BHP	Canada
Isabelle	Levesque	Government of QC	Canada
Peter	Lighthall	Consultant	Canada
Kevin	Lutes	Newfields	United States
Renato	Macciotti	U of A	Canada
Eduardo	Marques	Universidade Federal de Viçosa	Brazil
Scott	Martens	Teck Resources	United States
Gord	McKenna	Landform Design Inst.	Canada
Nordie	Morgenstern	University of Alberta	Canada
Kim	Morrison		United States

Len	Murray	KCB	Canada
Lindsay	Newland Bowker	WMTF	United States
João	Pimenta Freire Neto	Pimenta de Ávila Consulting	Brazil
Gord	Pollock	WSP	Canada
Emmanuel	Pomillos	WSP	Peru
Bob	Powell	GeoRDP	Canada
Caius	Priscu	ICOLD	Romania
Henny Dwi	Purnamasari	ICOLD	Australia/SE Pacific
Joe	Quinn	КСВ	Canada
David	Reid	UWA	Australia/SE Pacific
Chaitan	Sandhu	Tetra Tech	Canada
Marty	Sangster	O'Kane	Canada
Fernando	Schnaid	Universidade Federal do Rio Grande da Sul	Brazil
Rob	Schryburt	Government of ON	Canada
Ardy	Sharifabadi	ADEQ	United States
Clint	Strachan	Stantec	United States
Sara	Toyra	ICOLD	Sweden
Greta	Tresoldi	LSI Lastem	Italy
Aleksey	Vakulenko	ICOLD	Russia
Luis	Valenzuala	Consultant	South America
Ramon	Verdugo	Madrid	Spain
Mark Geoffrey	Walden	Newfields	United States
Bryan	Watts	Consultant	Canada
David	Williams	Queensland	Australia
Krzysztof	Wrzosek	ICOLD	Poland