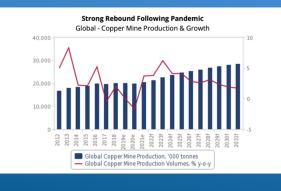
What Could Tailings Facility Engineering Look Like in 2030? Version 1.0

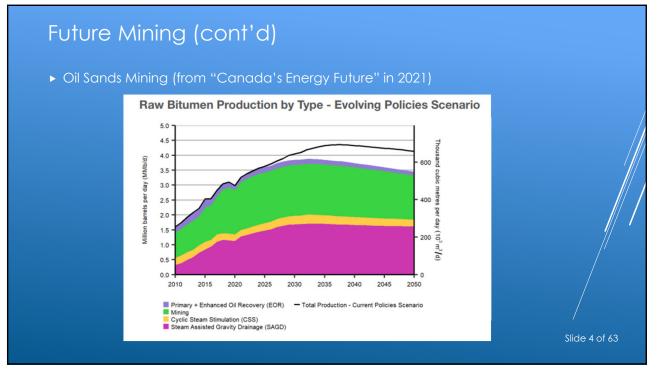
Andy Small, KCB, Canada Annika Bjelkevik, TCS, Sweden Andrew Witte, KCB, Canada

> For Presentation to Calgary Geotechnical Society – May 14, 2024

Tailings Facility Engineering


- Tailings milling and processing
- Design of tailings storage facilities
- ► Closure design
- Geotechnical engineering
- ► Hydrogeological engineering
- ► Hydrotechnical engineering
- ► Geology

- Geochemistry
- Environmental protection
- ► Construction
- ► Operations
- ► Surveillance
- Risk Assessment
- ► Governance
- Engineering and scientific studies
- ► Field work (drilling, construction)
- Lab analyses (testing and interpretation)
 - Modelling (simple to advanced)


Slide 2 of 63

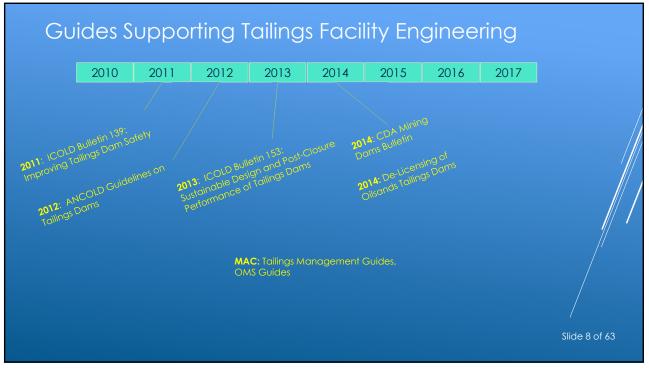
Future Mining

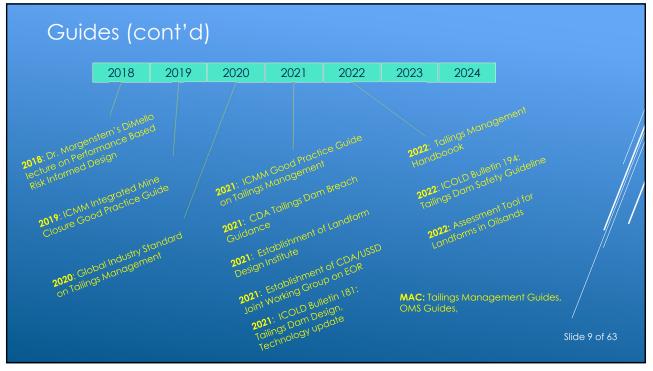
- Global precious metals demand to increase by 4% per year to at least 2030 (expertmarketresearch.com)
- ► Gold demand to increase at 3.5% per year to at least 2030 (Zion Market Research, yahoo.com)
- Copper demand to increase at 2.8% per year (Fitch Solutions, Mining.com)

Slide 3 of 63

Future Tailings Production and Storage

- Grades of ore bodies are reducing
- To extract a unit of metal, there will need to be more ore processed than previously
- Leads to more tailings
- Repurposing old facilities
- More filtered tailings
- ► Lots of slurried facilities





Why 2030?

- ▶ Why not 2040 or 2050?
- "6 years will go by in the blink of an eye"
- ▶ Reflect on some of what has happened in the past 6 years
- Start with guidance documents

Slide 7 of 63

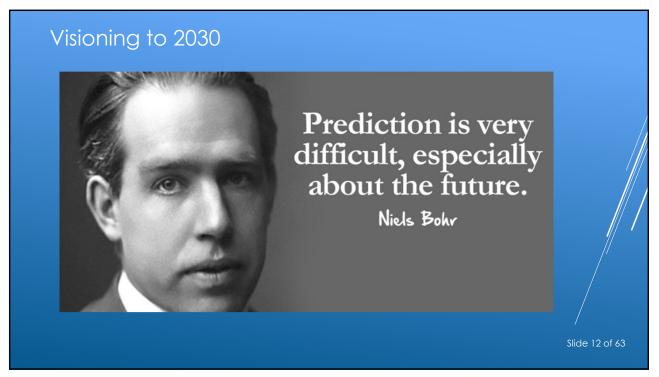
Why 2030?

▶ Reflect on some of what has happened in the past 6 years:

Торіс	2018	2024
Engineer of Record	Significant trepidation	Young engineers are viewing this as a viable career path
Surveillance	Some automation	Extensive automation and innovative technologies
Artificial Intelligence	Not prevalent	Playing a bigger role

- > Opportunity to maintain the momentum that has been built
- Opportunity for more than "continuous improvement"
- ▶ We believe the next 6 years could see continued significant advancements

Slide 10 of 63


Context

- ► Positive items:
 - Many risk reduction initiatives underway
 - Moving in a good direction
 - Reducing likelihood of catastrophic failures
 - Owners and Consultants have created safe environments for young engineers
 - Training programs
 - Gain in computing power
 - ► Artificial Intelligence
 - ► TSF Registry (>21,000 TSFs catalogued)

- ► Challenges:
 - Water scarcity
 - Investors paying a great deal of attention
 - ► Significant demand for EORs, RTFEs, ITRBs
 - ► Loss of senior engineers
 - Need to attract and retain talent
 - Dealing with classic upstream facilities

How do we get ahead of some of these challenges?

Slide 11 of 63

What Could Tailings Facility Engineering Look Like in 2030?

- 1. Technical Items:
 - a) Tailings technology and deposition strategies
 - b) Closure strategies
 - c) Characterization of tailings and foundation soils
 - d) Design
 - e) Surveillance
- 2. Competency and Capacity:
 - a) Guidance documents
 - b) Training and development of Tailings Facility Engineers
 - c) Regulatory competency and capacity

Governance is a key item that is also evolving, but beyond our scope

Slide 13 of 63

13

Intended Audience

- Owners and Operators
- ► Consultants
- ► Academia
- ► Suppliers
- ► Regulators
- Geotechnical, geological, hydrotechnical, and civil engineers
- Young engineers who are interested in tailings facility engineering, but would like to know where we are headed

Slide 14 of 63

Pa	pers and Prese	entation	S		
Version	Forum	Location	Deliverable	Date (2024)	Presenter
1.0	Calgary Geotechnical Society	Calgary	Presentation	May 14	Andy
2.0	Edmonton Geotechnical Society	Edmonton	Presentation	May 16	Andy
3.0	Nova Scotia Mining	Nova Scotia	Presentation	July	Andy
4.0	ICOLD	India	Presentation and paper	September	Annika
5.0	Tailings and Mine Waste	Denver	Presentation and paper	November	Andrew
6.0	International Society of Soil Mechanics and Geotechnical Engineering	Chile	Presentation and paper	November	Andy
					/′

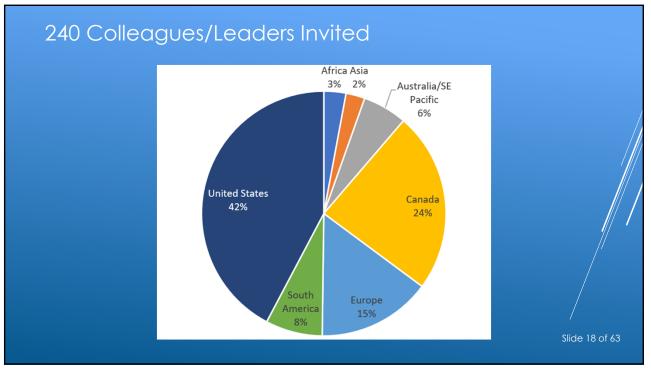
- Build the presentations and papers with feedback from each session
- Make presentations and papers available on One Drive that will be available through ICOLD - after September

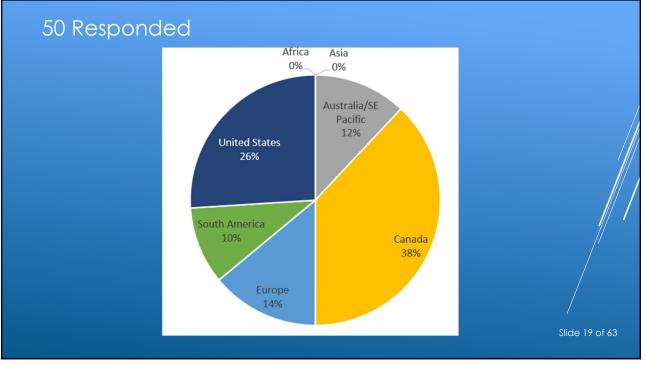
Slide 15 of 63

15

Questionnaire to Colleagues/Leaders

- ► To support development of the presentations and papers
- ► Six categories:
 - Tailings technology and deposition
 - Closure strategies
 - Characterization of tailings and foundation soils
 - Surveillance of tailings facility performance
 - Design approaches for slope stability assessment
 - Guidance documents for tailings facility safety design
 - Building competency and capacity
- Issued to over 240 colleagues around the world
- ► Over 50 responses
- ► Lots is happening, this presentation provides some of the highlights


Slide 16 of 63


Questionnaire Participation

- Alberta Contributors:
 - Nicolas Beier, U of A
 - Norm Eenkooren, Sunco
 - Derek Etherington, CNRL
 - Dr. Renato Macciotta, U of A
 - Chad LePoudre, BHP
 - ► Scott Martens, Teck
 - Gord McKenna, Landform Design Institute
 - ▶ Dr. Norbert Morgenstern, U of A
 - ► Gord Pollock, WSP
 - Joe Quinn, KCB
 - Marty Sangster, O'Kane Consultants
- Compete list of contributors on last slide
- Results of questionnaire to be posted on OneDrive after September

Slide 17 of 63

What Could Tailings Facility Engineering Look Like in 2030?

- 1. Technical Items:
 - a) Tailings technology and deposition strategies
 - b) Closure strategies
 - c) Characterization of tailings and foundation soils
 - d) Design
 - e) Surveillance
- 2. Competency and Capacity:
 - a) Guidance documents
 - b) **<u>Training and development</u>**
 - c) Regulatory competency and capacity

Slide 20 of 63

Part 2b – Training and Development

21

2b – Training and Development – Current Situation

- ► Positive items:
 - Field of tailings engineering is challenging, interesting, and highly complex
 - Not commodity-based engineering could be attractive to young engineers
 - Tailings Conferences (record attendance)
 - ► Training: UBC, UofA, TailENG, Tailings Center of Excellence, AusIMM, TailLiq, ICOLD, CDA, USSD, USACE, FERC, ANCOLD, SME, WIM, CIM etc.
 - Consulting company training
 - Owners developing in-house capacity

- ► Challenges:
 - Complexity will increase with future facilities
 - Lack of skilled talent
 - Retention is a challenge (career path, political situation, location)
 - Impending retirements
 - Fewer young engineers wish to work in remote areas to gain the field experience
 - Limited training at undergraduate and masters levels

Slide 22 of 63

Slide 21 of 63

2b – Mine Waste Management Professional

- ► Establish the discipline of Mine Waste Management Professional
- > Alternative terms: Tailings Management Professional?
- Mine waste management includes the design, construction operation, and closure of systems that are used to produce mine waste and the facilities that are constructed to store mine waste.
- Mine waste structures include:
 - Conventional slurry, thickened, paste, filtered tailings stacks (wet / dry deposition), residue;
 - Co-disposed, co-deposited, and co-placed mineral residue (e.g. tailings and waste rock, fines and coarse discards, etc.);
 - Waste rock dumps;
 - Coarse refuse dumps;
 - Solid smelter waste, slag piles and heap leach pads;
 - Sludge and sediment containment facilities from process, water treatment plants, or runoff.

Slide 23 of 63

23

2b – Mine Waste Management Professional (cont'd)

- Tailings milling and processing
- Design of tailings storage facilities
- ► Closure design
- Geotechnical engineering
- ► Hydrogeological engineering
- ► Hydrotechnical engineering
- Geology

- ► Geochemistry
- Environmental protection
- ► Construction
- ► Operations
- ► Surveillance
- ► Risk Assessment
- ► Governance

2b – Training and Development – 2030?

- Recognized discipline of MWM Professional
- Supporting gap assessment to develop training programs
- ► Tailings Training Portal (SME)
- Coordinated training to fill the gaps
- Decision made as to whether there should be a certification program for a MWM Professional.
- Improved diversity and equity
- ► Limited liability exposure to MWM Professionals

Slide 25 of 63

25

2b – Training and Development – 2030?

- ► Additional post graduate programs in MWM.
- From Chris Bareither, Colorado State: "Establish a post graduate tailings cohort in a university program that is focused on developing tailings engineers, less research focused."
- More engagement between industry and academia

Slide 26 of 63

Slide 27 of 63

What Could Tailings Facility Engineering Look Like in 2030?

- 1. Technical Items:
 - a) Tailings technology and deposition strategies
 - b) Closure strategies
 - c) Characterization of tailings and foundation soils
 - d) Design
 - e) Surveillance
- 2. Competency and Capacity:
 - a) Guidance documents
 - b) Training and development
 - c) Regulatory competency and capacity
- 3. Path forward

1a - Tailings Technology – Current Situation

- ▶ >99% are slurried facilities
- Filtered/dewatered tailings project <1% worldwide and technologies are constrained (throughput, dust, acid generation, water management)
- Co-mingling/disposal with waste rock gaining traction
- Use of decision analysis (e.g., Multiple Accounts Analysis, MAA) for selecting tailings technology in North America
- Limited application of MAA outside of North America

Slide 29 of 63

29

1a - Tailings Technology – 2030?

- Conventional/slurried tailings:
 - Still will be the majority of tailings systems with focus on centerline and downstream dams
 - No more classical upstream dams being constructed in the world
 - Modified upstream dams not "black-listed" (e.g., large compacted sand beaches are accepted)
 - From Joe Quinn, KCB: "Safety of conventional/slurried tailings systems have been achieved to instill a high degree confidence in stakeholders"

Slide 30 of 63

1a - Tailings Technology – 2030 (cont'd)?

- ► Filtered tailings:
 - The technology exists and is proven
 - From Norm Eenkooren, Suncor: "Hopefully, there will be publications which show the benefits of filtered tailings stacking both from a risk perspective and a cost perspective."
 - > Publicly available, comprehensive guidance on filtered tailings stacks
 - Addresses geotechnical aspects in detail
 - ► Provides operational approaches to limit dust and water infilitration
 - Hybrid solutions with filtered and slurried systems
 - ▶ The term "dry stack" is no longer used

Slide 31 of 63

31

1a - Tailings Technology – 2030?

- Widespread use of decision analysis:
 - Consider the whole mine
 - Separate costs from other variables in MAA
 - Develop financial models that embrace full life-cycle costing without discounting closure costs to low values
 - Support selection of appropriate tailings technology
 - Place high priority on water conservation
- Geochemical segregation more intentional (e.g., management of sulphide concentrates in isolated areas)
- Co-mingling of tailings and wasterock more viable
- From Derek Etherington, CNRL: "I think water management will become the governing factor of oilsands mining by 2030. If Alberta goes into a period of drought, river water intake by operators may be limited or cut-off completely."

Slide 32 of 63

1b – Closure Strategies – Current Situation

- Geochemical and geotechnical aspects improving
- Landforming and geomorphology are gaining prominence
- Oilsands delicensing continuing to advance
- "Designing for closure from the start" is an old saying, but not enough is being done
- Many regulations require a closure plan for permitting, but it is not always clear how to get there
- Costs for closure and post closure measures are seldom accurate and costs discounted with NPV

Slide 33 of 63

33

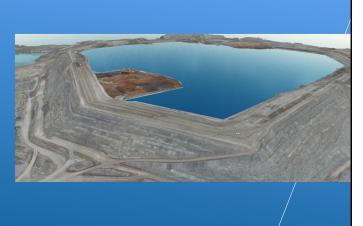
1b – Closure Strategies – 2030?

- Consensus between all parties of an effective definition of Safe closure/ Responsible closure
- > Defined and standardized design criteria for closure, incl. transfer of ownership
- Less water in the tailings and impoundments
- Financial models that benefit good practices
- Long-term monitoring with remote methods and AI
- Marty Sangster, O'Kane: "With AI, we would have the ability to assess and design closure structures for possible changed conditions in the future."
- Gord McKenna, LDI: "Establish the role of reclamation designer of record (RDR) working in parallel with EOR".
- Ecosystem Specialists part of independent review boards

Slide 34 of 63

<section-header><section-header><section-header><section-header><section-header><section-header><complex-block><complex-block><complex-block><complex-block>

35


1c – Char. of Tailings and Foundation Soils - Current

- Budgets for site characterization used to be limited, but has been by evolving Owner's commitments and regulatory requirements
- Most of the tools are there but the toolbox (CPT, sampling, lab testing, CSSM etc.) could be organized, refined, and the tools sharpened.
- From Gord Pollock, WSP: "CPT is the obvious tool but it is not the silver bullet. The scatter in the case histories shows we do not have a handle on this issue."
- From Scott Martens, Teck: "Methods for characterizing and understanding the behaviour of <u>unsaturated</u> tailings are severely limited, and understanding <u>unsaturated</u> behaviour (for both strength and seepage) will be essential for assessing safe closure of tailings facilities."

Slide 36 of 63

1c – Char. of Tailings and Foundation Soils – 2030?

- Improved characterization of liquefaction potential and post liquefaction strength
- Improved understanding of the impact of tailings fabric/layering
- Use of nuclear magnetic resonance well logging and other in-situ technologies on CPTs for water content estimation
- Ability to estimate in-situ void ratio
- Methods for recovering "undisturbed" samples of fine and coarse tailings

Slide 37 of 63

37

1c – Char. of Tailings and Foundation Soils – 2030?

- ► New geophysics and non-destructive/non-invasive technologies
- Include pore pressure measurement on electric vane shear tests (eVSTu)
- Integrated and updated site characterization models
- Widespread sharing of common data (e.g., adjacent mines in districts sharing data, consortiums like in the Oil Sands)

Slide 38 of 63

1d – Design – Current Situation

- Limit equilibrium used for most designs
- Conservative approaches for assessment of classical upstream dams
- Performance based design for slope stability assessment is evolving with increased computing power and surveillance methods
 - ► ICMM Training on PBD
 - ► CDA Training on PBD
- Risk informed design accounting for consequences to the Owner by enhancing design criteria

Slide 39 of 63

39

1d - Design - 2030?

- ▶ Performance Based Design for Slope Stability Assessment:
 - Wide range of views in the questionnaire
 - From Dr. Morgenstern: "Further recognition of the value of Performance Based Design and significantly greater prominence in its use."
 - ► Integration of complementary roles of PBD and LEM
 - ► Fully coupled deformation and seepage models
 - PBD applied to filter stacks as well as conventional tailings
 - Regulatory capacity will still be a limitation to implementation

Slide 40 of 63

1d - Design - 2030?

From Dr. Macciotta, U of A: "Full recognition of uncertainty in the design, implementation, operation and closure process."

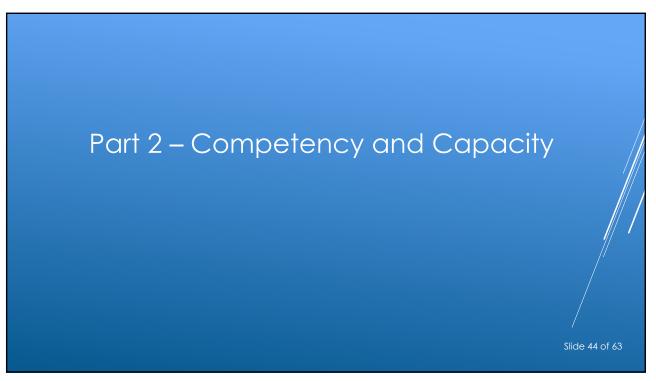
State of Engineering will be advanced sufficiently to reduce/control these uncertainties such that risks are minimized."

- Dam breach analysis that can be relied upon.
- Alternatives to water covers for acid generating tailings will be commonplace

Slide 41 of 63

1e – Surveillance – Current Situation

- Widespread use of "point" measurements (e.g., vibrating wire piezometers (VWPs), survey prisms, inclinometers, and weirs)
 - Somewhat ad-hoc, historical locations, not always tied to failure modes
- Limited automation
 - ▶ Reliance on humans to collect and process data
 - ▶ False positives in so called "real-time" data
 - Cumbersome data management interfaces
- Limited application of remote sensing technologies (e.g., InSAR)


1e – Surveillance – 2030?

- Increased use of "area" measurements (e.g., InSAR, fibre optics, "Smart" geofabrics, ERT cables, drones, etc.)
- Surveillance programs/systems developed based on risk assessment and failure modes

- Widespread automation with improved user interfaces
 - Integration of collected data directly into engineering models
 - > Data scientists employed to manage the reams of data
 - Increased use of AI for data review/screening
- Creation of hubs of satellite data that contains performance information from similar structures to build case histories on acceptable performance

Slide 43 of 63

2a – Guidance Documents – Current Situation

- ▶ Some said: "We have enough guidance documents, use what we have!"
- Guidelines in review/being updated:
 - ► MAC
 - ► CDA
 - ► USSD (FEMA)
 - ► CDA/USSD EOR
 - ► ICOLD Bulletin 194
 - ► Others

Slide 45 of 63

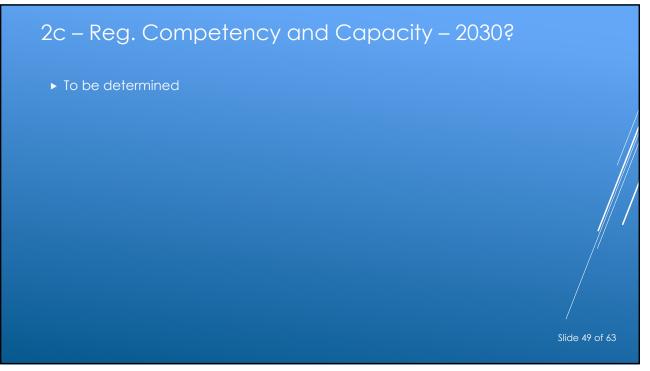
45

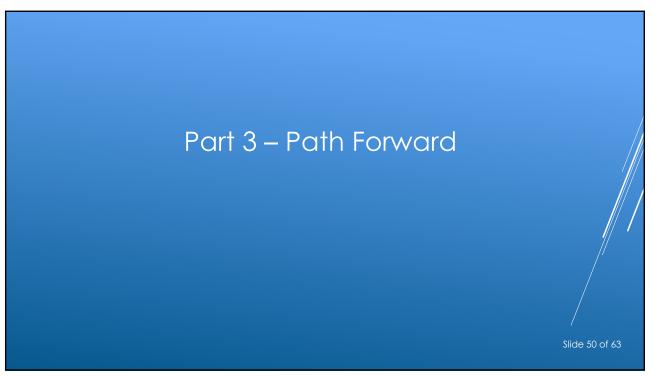
2a – Guidance Documents – Current Situation

- ► Gaps in the guidelines:
 - ► Filtered stacks
 - ► Safe/Responsible Closure
 - Risk informed design practices
 - Methods for characterizing tailings and foundation soils
 - Spillway design
 - Credible Failure Modes

Slide 46 of 63

2a – Guidance Documents – 2030?


- ▶ Wide adoption of GISTM, MAC, ICMM, ICOLD, etc.
- Refined guidance with holes plugged
- Detailed closure guidance
- Detailed filtered stack guidance
- Credible Failure Modes Guidance
- Landform design guidance including long term monitoring
- ► Version X of ICOLD Bulletin 194:
 - More on hydrogeology and hydrology
 - Conducting undrained stability analyses
 - Brittleness and stability
 - Spillways
 - Tailings and Foundation Characterization


47

2c - Reg. Competency and Capacity - Current

- ▶ From Dr. Morgenstern: "A major issue is the capacity of the regulatory community."
- Limited technical capacity among regulators
- > Limited ability of external consultants to support regulators with reviews
- CDA providing training to regulators in Canada

Slide 47 of 63

3 – Path Forw	ard – Iraining and D	evelopn	nent
Vision for 2030	Action	Organizations	Role
Mine Waste Management Professional	Develop scope for this discipline and embrace usage	ICOLD	Lead development, work with ICMM, SME, CDA, ANCOLD, universities, etc.
Decision w.r.t. certification of MWM Professional	Study this issue and land on a decision	ICOLD	Form working group to explore this issue. Work with ICMM, SME, CDA, ANCOLD, universities, etc.
Coordinated training	Develop Tailings Training Portal that reflects available training in the world. Use the Portal to support developing a coordinated training program.	SME	Host for the portal, supported by several organizations
Tailings cohorts in post graduate programs	Develop MS-level program focused on training engineers to enter the tailings profession	Colorado State University	Lead development of this initiative, supported by other universities
			Slide 51 of 63

3 – Path Forward – Tailings Technology

	A		Data
Vision for 2030	Action	Organizations	Role
MAA that considers the whole mine, not just the tailings. Includes the mining plan, water restrictions, closure, circular economy.	Work with mining companies and MAC/ICMM to promote this concept. Also, develop financial models that can support better closure decisions.	To be determined	To be determined
Co-disposal of tailings and waste rock more prominent	To develop		
"Safety of conventional/slurried tailings systems have been achieved to instill confidence in stakeholders."	Continue training and development	All	Continue solid engineering
			Slide 52 of 63

Vision for 2030	Action	Organizations	Role
Tailings Closure Handbook	"Begin with the end in mind. Closure should not be an afterthought. Elements will include closure design considerations/criteria, safe closure considerations, landform design, closure governance, closure cost estimating / bonding / relinquishment, among other."	SME	SME to lead development of handbook. The book editors are engaging with other organizations (e.g., USSD, CDA).
Risk Informed Closure Design	Develop guidance on "safe" or "responsible" closure.	CDA	CDA to lead with input from ICOLD, USSD, SME, ICMM, etc.
			Slide 53 of 63

3 – Path Forward – Char. of Tailings and Foundations

Vision for 2030	Action	Organizations	Role
Ability to measure void ratio in-situ	Continued research with NMR, density, and additional tools	Universities and Investigation companies	Undertake research
Ability to discern brittleness	Continued research in in-situ and laboratory testing approaches	Universities and Investigation companies	Undertake research
			/ Slide 54 of 63

Vision for 2030	Action	Organizations	Role
Greater use of Performance Based Design	Education, case studies	ICMM, CDA, and industry	ICMM and CDA – training Industry – case studies on PB design
Reduced uncertainty for dam breach analyses	Research to improve models and characterization and enhance guidance	CANBREACH CDA	CANBREACH – research CDA - guidance
No water covers required for geochemistry reasons	Improved desulphurization. Enhanced financial models. MAA for the mine, not just tailings.	Mining companies	ICOLD will monitor

3 – Path Forward – Surveillance

Vision for 2030	Action	Organizations	Role
"Area" measurements	Continued implementation of available tools	Owners and providers	Implement and provide case studies
Widespread automation	Increased use of AI to support automation	Owners and providers	Implement and provide case studies
			Slide 56 of 63

3 – Path Forw	vard – Guidance		
Vision for 2030		Organizations	Role
Guidance on Filtered Tailings	Comprehensive guidance document that addresses process and geotechnical aspects, but also, possibly enhanced financial models	Filtered tailings industry	To lead the development of the guidance. Supported by ICOLD and other organizations.
Preferred definition of Credible Failure Modes	Objective guidance on thresholds for physical possibility and negligibility	CDA	Lead development of guidance, supported by other organizations
			Slide 57 of 63
			Slide 57 of 63

3 – Path Forward – Guidance (cont'd)

Vision for 2030	Action	Organizations	Role
Landform Design Guidance	Develop comprehensive guidance for landform design	LDI	Lead development of guidance with support from other organizations
ICOLD Bulletin 194 Version X	Additional guidance on hydrogeology and hydrology, undrained stability analyses, brittleness stability, spillways, characterization	ICOLD	Lead preparation of guidance with input from other organizations
			Slide 58 of 63

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item>

59

Being a Mine Waste Management Professional is and will be very interesting!

Annika Bjelkevik, TCS Sweden

Andrew Witte, KCB Vancouver

Andy Small, KCB Fredericton

Slide 60 of 63

End of Presentation

61

Contributors to Questionnaire

Chris	Bareither	Colorado State	United States
Hector	Barriga	ICOLD	Peru
Nicholas	Beier	U of A	Canada
Karen	Chovan	Envirointegration	Canada
Dermot	Claffey	ICOLD	United Kingdom
Jarrad	Coffey	ICOLD	Australia
Andrew	Copeland	ICOLD	South Africa
Mike	Davies	Consultant	Canada
Norm	Eenkoren	Suncor	Canada
Fiona	Esford	WSP	Canada
Derek	Etherington	CNRL	Canada
Duncan	Grant-Stuart	ICOLD	South Africa
Hans	Haggstrom	ICOLD	Sweden
Eric	Halpin	Consultant	United States
Dean	Korri	Cleveland-Cliffs Inc.	United States
Gareth Digges	La Touche	WSP	United Kingdom
Chad	LePoudre	BHP	Canada
Isabelle	Levesque	Government of QC	Canada
Peter	Lighthall	Consultant	Canada
Kevin	Lutes	Newfields	United States
Renato	Macciotti	U of A	Canada
Eduardo	Marques	Universidade Federal de Viçosa	Brazil
Scott	Martens	Teck Resources	United States
Gord	McKenna	Landform Design Inst.	Canada
Nordie	Morgenstern	University of Alberta	Canada
Kim	Morrison		United States

Len	Murray	KCB	Canada
Lindsay	Newland Bowker	WMTF	United States
João	Pimenta Freire Neto	Pimenta de Ávila Consulting	Brazil
Gord	Pollock	WSP	Canada
Emmanuel	Pornillos	WSP	Peru
Bob	Powell	GeoRDP	Canada
Caius	Priscu	ICOLD	Romania
Henny Dwi	Purnamasari	ICOLD	Australia/SE Pacific
Joe	Quinn	KCB	Canada
David	Reid	UWA	Australia/SE Pacific
Chaitan	Sandhu	Tetra Tech	Canada
Marty	Sangster	O'Kane	Canada
Fernando	Schnaid	Universidade Federal do Rio Grande da Sul	Brazil
Rob	Schryburt	Government of ON	Canada
Ardy	Sharifabadi	ADEQ	United States
Clint	Strachan	Stantec	United States
Sara	Toyra	ICOLD	Sweden
Greta	Tresoldi	LSI Lastern	Italy
Aleksey	Vakulenko	ICOLD	Russia
Luis	Valenzuala	Consultant	South America
Ramon	Verdugo	Madrid	Spain
Mark Geoffrey	Walden	Newfields	United States
Bryan	Watts	Consultant	Canada
David	Williams	Queensland	Australia
Krzysztof	Wrzosek	ICOLD	Poland